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We present statistical measurements of spatially and temporally chaotic surface waves in relatively
large containers (10-30 wavelengths across) with various boundary geometries and wetting conditions.
The patterns are measured using transmission optics and video image processing. Although the instan-
taneous patterns are highly disordered, they retain sufficient phase coherence that the time-averaged im-
ages have spatially periodic structure. The symmetry of the time-averaged images is related to the sym-
metry of the boundaries. The convergence of the averaging process is significantly slower than that of a
Gaussian random process. An average image can be explained as arising from amplitude and phase fluc-
tuations about a base wave pattern. The form of the base pattern is that expected near onset in an
infinite system. The amplitude of the average image, which decreases with drive amplitude, is related to
the variance of phase fluctuations. Despite the relatively large dimensions, the base pattern is box quan-
tized by the cell walls. Nonhysteretic jumps occur between these states as the drive frequency is varied.
Close to the jumps the patterns fluctuate between several quantized states. Some of the statistical
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methods utilized here could be employed to analyze spatiotemporal chaos in other systems.

PACS number(s): 47.52.+j, 47.35.+1, 47.54.+r

I. INTRODUCTION

The problem of how to characterize and understand
spatiotemporal chaos is a challenging issue in nonlinear
physics. These states fluctuate not only in time but also
in space and have correlation lengths sufficiently short
that many degrees of freedom are involved in the dynam-
ics. Many spatially extended systems exhibiting spa-
tiotemporal chaos (STC) have been investigated, both ex-
perimentally and numerically, and a variety of methods
have been employed to characterize them [1].

The invariant quantities used to characterize nonlinear
dynamics (attractor dimension, Kolmogorov-Sinai entro-
py, and so forth) can be determined in numerical studies
of STC, and methods have been proposed to determine
some of them from experimental data [2]. However, the
data requirements such that, so far, these methods have
not been found generally useful. On the other hand, sta-
tistical methods have been productively employed to de-
scribe STC in some cases. For example, statistical prop-
erties of the total heat transport (e.g., averages, spectra,
and moments) have provided a useful but limited way to
characterize STC in thermal convection, starting with the
early measurements of Ahlers and Behringer [3]. Analo-
gous global measurements were employed in subsequent
studies of other systems. The statistical properties of de-
fects in STC have also been explored, especially in elec-
troconvecting nematic liquid crystals [4,5]. The sys-
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tematics of spatial autocorrelation functions have been
used fruitfully to characterize STC in both parametrically
forced surface waves [6] and Rayleigh-Bénard convection
[71.

A variety of other statistical measures are accessible
through imaging measurements. The simplest of these is
the time average of the pattern, or of its image. Though
this may seem like an obvious measure to consider, it has
not been studied until recently in pattern forming sys-
tems, although it had earlier been considered in the study
of dynamical systems [8—-10].

One might expect on grounds of translational invari-
ance that the spatial average of a sufficiently large thin
layer system would be featureless in a state of spatiotem-
poral chaos, if the correlation length & is very much less
than the horizontal dimension L. However, the approach
to this limit, and the behavior of time-averaged patterns
for large but not infinite systems, is less clear. In a pre-
liminary paper [11], we explored the systematics of time
averages in parametrically forced surface waves (Faraday
waves) far above the onset of STC in square cells of
widths up to 20 times the wavelength of the basic cellular
instability. Structured time averages were found and not-
ed to be aligned with respect to the walls of the container.
(An example of this phenomenon is shown in Fig. 1; a full
discussion of this figure and the relevant parameters ap-
pears later in the paper.) The amplitude of the average
pattern decreased with increasing drive amplitude and
the characteristic wave number was observed to change
discontinuously as a function of drive frequency. The
amplitude of the average pattern was also dependent on
the degree of pinning of the meniscus at the lateral boun-
daries. The structured time averages apparently occur
because the chaos involves small ordered patches that are
preferentially aligned and partially phase coherent with
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the average, despite the large chaotic fluctuations.
Structured averages are known to occur in other sys-
tems. For example, Taylor vortices apparently persist in
a mean sense far above the transition to turbulence.
However, they have not been studied quantitatively.
Ning et al. [12] have also reported structured time aver-
ages in a study of chaotic roll structures in rotating
Rayleigh-Bénard  convection. They studied the
phenomenon in both circular and polygonal cells, and
showed that fluctuations in the total heat flux through
the layer are correlated with fluctuations in the spatial

(a)

(b)

©

FIG. 1. Instantaneous and time-averaged images for square
geometry (cell 4, f,=55.75 Hz). (a) Shadowgraph image of the
time-independent wave pattern near onset (¢ =0.05). The wave
pattern is approximately a mixed mode with mode numbers
(29,6). (b) Instantaneous image of a chaotic pattern (e=1.0).
(c) Time average over 12 800 images (e=1.0). The average re-
veals the probability distribution of antinode positions. High
intensities are shown dark.

structure.

In the present paper we extend our earlier studies of
chaotic wave patterns, and show how the study of various
statistical properties, including time averages, can be
used to distinguish between competing hypotheses about
the nature of the fluctuations. We characterize the aver-
age patterns precisely, and address the following ques-
tions: What determines the symmetry, amplitude, and
wave number of time-averaged patterns? How do the
averages compare with the patterns observed at onset,
which are typically related to modes of the container?
How can one best model the instantaneous patterns and
their fluctuations in order to understand the emergence
of the structured time averages? How do the patterns
fluctuate about the mean pattern?

In order to place this work in context, and to explain
the significance of these studies of the statistical proper-
ties of chaotic wave patterns, we begin by reviewing pre-
vious experimental and theoretical work on Faraday
waves in Sec. II, with emphasis on studies related to spa-
tiotemporal chaos. The experimental methods used in
the paper are the subject of Sec. III. In Sec. IV, we in-
troduce the structured time-averaged patterns, show their
dependence on boundary symmetry, and demonstrate
that their structure does not result from a trivial ordering
of the whole pattern. In Sec. V we carefully explain how
the time-averaged images can be interpreted to give infor-
mation about the fluctuating instantaneous wave fields.
We then present in Sec. VI extensive measurements and
interpretation of the statistics and parameter dependence
of the average images. A summary and discussion of the
main results follows in Sec. VII.

II. RELATED WORK ON FARADAY WAVES

When a fluid layer with a free surface is subjected to a
vertical oscillation of amplitude A4 greater than a critical
value A_, it is unstable with respect to interfacial stand-
ing waves. They were first studied and described by
Faraday [13]; their nonlinear properties continue to pro-
vide interesting challenges. An extensive experimental
and theoretical literature documents phenomena such as
the development and selection of ordered patterns, and
the subsequent transitions to spatial and temporal disor-
der.

The linear stability theory for waves on the surface of a
fluid driven by vertical oscillation was developed by Ben-
jamin and Ursell [14]. They considered the linear stabili-
ty problem in the inviscid limit and solved for the veloci-
ty potential. Under the assumption that solutions are
normal modes of the fluid container, the equations of
motion reduce to the standard form for the Mathieu
equation. The solution has stability tongues in the pa-
rameter space defined by drive acceleration vs wave num-
ber. The wave frequencies @ within the tongues occur at
0=n{1/2, where Q is the drive frequency and » is a posi-
tive integer. The n =1 subharmonic response is selected
due to its lower threshold, after the effect of viscous dissi-
pation is included in the theory. The dispersion relation
connecting wave frequency w and wave number « is



1130

w*=tanh(kh) %K3+gx (2.1)

where vy is the surface tension, p is the fluid density, g is
the local gravitational constant, and A is the mean fluid
depth.

Milner, and Zhang and Vinals [15] have extended the
theory presented by Benjamin and Ursell to a set of am-
plitude equations that include nonlinear interactions be-
tween the spatial components of the waves. The resulting
theory, applicable to large aspect ratio systems, predicts
the wave number and symmetry of the most stable wave
forms. For the fluid properties used in this paper, the
theory predicts stable square patterns for a finite range
above the critical amplitude:

&(x,y)=a[ cos(kx)+ cos(ky)] , 2.2)

where the local surface height is denoted
h(x,y,t)=§(x,y)sin(wt), plus higher harmonics. For
higher drive amplitudes, Milner predicted a secondary in-
stability to a transverse amplitude modulation, similar to
those observed in various experiments [6,16]. Additional
phenomena due to a thin layer of surfactant at the inter-
face, or a finite meniscus at the lateral boundary, have
also been considered [15,17].

Experimental studies of onset patterns and transitions
to disorder in Faraday waves were reviewed by Miles and
Henderson [17]. Most experiments involve systems at
low aspect ratio I', defined by the ratio of the cell size L
to the hydrodynamic wavelength A. Onset patterns were
studied extensively by Douady and co-workers [18,19] in
square and rectangular cells, with aspect ratios in the
range 1 <I" <10. They observed strong effects on pattern
selection due to finite cell size and boundary wetting; the
onset patterns were found to be modes of the container
and linear combinations of these modes.

Disordered patterns at large aspect ratio were reported
by Ezerskii et al. [16]. They observed the onset of trans-
verse amplitude modulations not far above the wave on-
set, and proposed a phenomenological amplitude equa-
tion model to describe the resulting dynamics. Ezersky
and Matusov [20] found that the addition of random
noise reduced the threshold of the transition to STC. Re-
cent work by the same group [21] concentrates on the dy-
namics of domain walls in large aspect ratio systems.

A statistical analysis of the transition to spatiotem-
poral chaos in Faraday waves at moderately high aspect
ratio (50-100) was conducted by Tufillaro and co-
workers [6,22], with n-butyl alcohol as their working
fluid. The ordered patterns were locally square sym-
metric. They investigated the systematics of spatial
correlation functions as the reduced drive amplitude
e=(A — A_.)/ A, was varied. They found that the transi-
tion to STC was marked by a sharp decline in both the
correlation length £ and the long-range orientational or-
der of the pattern. In addition, they observed approxi-
mately Gaussian fluctuations in the underlying spatial
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Fourier amplitudes in the chaotic regime. The transition
to STC was- found to be dependent on cell geometry
despite the fairly large aspect ratio. Edwards and Fauve
[23] have recently suggested an explanation for this
dependence based on the relatively narrow width of the
stability tongues for low viscosity fluids.

Another approach to detecting the transition to spa-
tiotemporal chaos was taken by Ciliberto, Douady, and
Fauve [24]. They measured fluctuations in the total ener-
gy dissipated by the surface wave motion, via small fluc-
tuations in the acceleration of the cell, which is driven at
constant power. They found that these fluctuations are
related to observed pattern fluctuations; therefore statis-
tics of the energy dissipation could be used to identify the
state of the waves.

Afraimovich et al. [25] have proposed a method for
calculating the correlation dimension D, of STC data in
physical space rather than in phase space, and have ap-
plied it to the analysis of chaotic wave data. They find
that as € is increased over the range 0.15 to 1.85, D, cal-
culated from individual instantaneous images of the
waves, increases; the method appears to converge
sufficiently: the variations between different measure-
ments at the same € are small.

In a recent investigation of spatiotemporal intermitten-
cy in Faraday waves at aspect ratio ~45, Bosch and van
de Water [26] used measurements of the mutual informa-
tion and spectral techniques in order to characterize the
disorder in the waves. They observed non-Gaussian fluc-
tuations of the spectral power at wave numbers smaller
than the primary wave number of the pattern. These au-
thors interpreted their observations in terms of coherent
structures and the existence of long-range order.

In a subsequent study, Bosch, Lambermonti, and van
de Water [27] confirmed the existence of time average
patterns for chaotic surface waves in square cells for
I'~17 and € <0.6. They prefiltered their images in order
to extract the positions of the antinodes, and observed or-
dered patterns in the distribution of antinode positions.
They also noted a strong dependence on wetting condi-
tions at the cell boundaries: the case for which the men-
iscus was ‘“pinned” showed a lower rms node “velocity”
and more pronounced hysteresis through the order-
disorder transition than was the case when the meniscus
was free. In addition, they observed longer correlation
lengths along an axis aligned with the container walls
than along the diagonals.

The disordered waves have also been explored by stud-
ies of particle and dye transport [28,29]. The statistics of
single particle diffusion approach that of a Brownian pro-
cess as the degree of disorder is increased. On the other
hand, recent studies of relative particle diffusion by
Alstrgm et al. [30] imply long-range correlations even
for strongly disordered waves (large €).

In summary, much of the previous work on Faraday
waves has been concerned with describing the formation
of patterns near the onset of the instability, and their sub-
sequent transitions to disorder. Limited work has been
done on the disordered states themselves. Understanding
the disordered regime is the primary problem addressed
in this paper.



III. EXPERIMENTAL METHODS
A. Apparatus

The automated experimental system is shown in Fig.
2(a). The fluid cell is mechanically coupled to a precision
electromechanical vibrator (Vibration Test Systems
VG100) controlled by a frequency synthesizer (Hewlett
Packard 3325) and power amplifier. A piezoelectric ac-
celerometer is used to monitor the acceleration ampli-
tude. The maximum fluctuations in drive acceleration,
observed at the high drive amplitudes due to variations in
energy dissipation in the fluid, are approximately 2%
rms. Provisions are made for optical access, and the
whole system is enclosed in a large thermally controlled
box and maintained at constant temperature
T =29x1°C.

The fluid cell is a sealed box, with interior dimensions
2 cm deep by 10.5 cm square horizontally, and with a
glass cover and bottom. The walls of the cell are
machined from Delrin. Inserts are used to convert to al-
ternate interior geometries, including square, circular,
and slightly elliptical cavities. The elliptical cavity was
made by matching a circular insert from a Delrin block
while it was under compression in one direction, then al-
lowing it to relax. The eccentricity of the resulting cell is
2(r;—ry)/(ry+r,)=0.02, where r, and r, are the major
and minor radii. The fluid is n#-butyl alcohol (kinematic
viscosity v=2.8 cm?s”!, surface tension y=24.6
dyne cm ™!, density p=0.81g cm?). It wets the walls of
the container. The cell is typically filled to a depth of 8
mm; the drive frequency is in the range 25 < f;, <200 Hz.
A summary of the different cavity geometries is given in
Table I.

In order to study the role of boundaries, several
different types of boundary conditions are used in these
experiments, as illustrated in Fig. 2(b). For the majority
of the measurements, the free surface of the fluid is
bounded by vertical walls, a case we call “wetted” boun-
daries. Additional measurements are made using ‘‘brim-
full” boundaries, where the cell is filled to meet the
corner of a horizontal step in the vertical walls. We also
use an “over-full” case, in which the fluid layer is slightly
higher than brim full, so that a thin layer ( <1 mm) of
fluid extends beyond the step.

B. Optics

The optics are based on screenless shadowgraph optics
[31], as illustrated in Fig. 2(a). A collimated beam of
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FIG. 2. (a) Experimental setup and optics. (b) Illustration of
various boundary conditions utilized to explore the effects of
wetting.

Vibrator

white light, formed from a point source and a large diam-
eter collimating lens, is sent vertically through the fluid
surface. The light is collected and imaged onto the
charged-coupled device (CCD) array of a video camera
by a large collection lens and a camera lens. These lenses
are kept at constant separation, approximately confocal.
Different object planes are then selected by adjusting the
distance from the camera lens to the CCD. The video
signal from the camera is digitized by an Imaging Tech-
nologies image processor in a Sun workstation.

The acquired images are fairly insensitive to the sam-
pling time provided that it is greater than one-half wave
cycle and shorter than the dynamic time scale of the ob-
served pattern fluctuations. To obtain what we call an
‘“instantaneous’ image, the light is integrated over a full
video frame (1/30 s), a time sufficiently long to integrate
over more than one wave cycle. (For low driving fre-
quencies some additional integration is performed after
digitization in order to satisfy this requirement.) For
each data run, the illumination intensity and the video di-
gitization offset and gain are set to maximize the contrast
and minimize the background in the instantaneous im-

TABLE 1. Fluid cells.

Cell Cavity geometry Dimensions (cm) Boundary conditions
A Square L=10.5 wetted
B Square L =6.5 wetted, brim full, over full
C Circular R =3.5 wetted
D Elliptical R pajor =3.51 wetted
R minor — 3.46
E Triangular, L,=L,=10.5 wetted

right isosceles

L,=14.8
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ages. Individual images or series of consecutive images
can be stored for later analysis, or summed in real time to
determine long time averages. We denote the “instan-
taneous” image by I (X,?), and the (long) time average of
the measured images by A4 (X)=I(X,t). Typical averag-
ing times are about 15 min; this corresponds to approxi-
mately 13 000 instantaneous images.

1. Shadowgraph technique

Although shadowgraph imaging is widely used for
visualization of fluid systems, it is typically applied to
systems where small gradients in the bulk properties re-
sult in local gradients in the index of refraction transverse
to the light path. In that case, the deflection of the light
rays is slight, and intensity variations in the resulting im-
ages are approximately linear in the square of the gra-
dient of the index of refraction [31]. In contrast, we use
the technique to visualize the deformation of the fluid
surface. In this case, the deflection of the light due to re-
fraction can be quite large, and much of the light is lost
due to the finite apertures of the optics. The resulting im-
ages are therefore bright only where the local surface
slope is close to zero. The images are similar to those
produced by the reflection optics discussed by Douady
[19].

The apertures of the optics limit the angle ¢ by which a
ray can be deflected at the interface and still be detected,
such that [tang|~¢<0.012 [32]. This condition
translates into a maximum surface gradient S=V{ such
that

|B] <0.026=A (3.1

in order for light to pass through the optics to the CCD.
We choose the mean surface of the fluid to be the object
plane of our imaging system. A light ray refracted from
a point at the fluid surface appears to originate at a point
spatially offset from its actual position by § sing <0.012&.
This offset is typically smaller than the spatial resolution
of the measurement, and can be neglected. Therefore
rays which pass through areas of the surface with |8| <A
are detected without spatial offset while all other rays are
lost. This situation is illustrated in Fig. 2(a), where the
rays drawn through the antinodes of the fluid surface
propagate through to the CCD, while others do not pass
through the camera lens aperture.

2. Computation of the images

The instantaneous optical images are not linear in the
surface wave field, but they do have a simple interpreta-
tion, which is the subject of this section. The main point
can be understood by considering an idea-
lized case of one-dimensional standing waves
of the form &(x)=a cos(kx), for which the gradient
B(x)=—aksin(kx). From linear theory for Faraday
waves [15] we know that ak~Ve. The proportionality
constant is of order unity. It follows that for > 1073
large areas of the images will appear dark. The majority
of the present work is performed in the range of € be-
tween 0.1 and 3.0. Therefore, the images are sharply
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peaked functions which highlight the local extrema of the
surface. Because bright spots appear for both the maxi-
ma and minima, the images have tfwice the basic wave
number of the surface height pattern.

In order to confirm this result, we compare two
different calculations of the detected image for the same
ideal wave form: one made by numerically tracing indivi-
dual rays through the surface and the individual optical
elements, the other computed by using a function approx-
imately equal to a § function of the local surface gradient.
The results are shown in Fig. 3. We have utilized an

(a)

(b)

(c)

FIG. 3. Quantitative test of the imaging process. (a) Sample
image of an onset pattern in the square cell. (b) Ray-tracing
computation of the image, averaged over a cycle of the wave
pattern. (c) Analytic approximation to the optical intensity
I5(X) (Eq. 3.4). The waveform used is a positive mixed mode
[Eq. (3.2)], with mode numbers (11,3). Bright spots in the image
(shown dark here) appear at positions of small surface slope, i.e.,
at antinodes. The apparent wave number of the pattern is dou-
bled.
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idealized mixed mode wave form that is typical of pat-
terns near onset in a square cell:

S(x,y)=al(S,,, (x,y)£S,,(x,y)) , (3.2a)
where
S, (x,y)=sin(mmx /L)sin(nmy /L) . (3.2b)

This function is a mixed mode that obeys Neumann
boundary conditions for a square cell of length L, with
the origin chosen at one of the corners of the cell. The
mode numbers (m =11, n =3) are chosen to approxi-
mate the onset pattern shown in Fig. 3(a). For the com-
putations we have chosen the wave amplitude such that
(ak)*~e=0.15.

The ray tracing computation of the light intensity on
the CCD is shown in Fig. 3(b). It is performed by tracing
a large number of individual rays through the fluid sur-
face and the subsequent optics. For each ray, a random
temporal phase is chosen for the wave in order to accom-
plish the desired temporal integration. All of the rays are
initially oriented vertically but pass through randomly
selected locations. If a ray passes through the optics and
reaches the CCD, the corresponding bin of a two-
dimensional array is incremented. This process is repeat-
ed for approximately 107 rays to accumulate good statis-
tics.

We used the actual material parameters and dimen-
sions of the cell and the optics in this computation.
However, we did not include either nonuniformity and
imperfect collimation of the illuminating light, or lens
aberration. The computed images are in good agreement
with the observed onset patterns. This can be seen by
comparing Fig. 3(a) with 3(b). We have also performed
this calculation without temporal integration. The same
sharp structure occurs for the peaks, but the constant in-
tensity background between the peaks is not present in
that case.

We also find that the following model is a useful ap-
proximation for the instantaneous images:

I(X,0)=1,8(|VE(X,1)])

=Io8(3,£(X,1)8(3,5(%,1)) . (3.3)

That is, that the instantaneous image is proportional to a
8 function of the local slope of the surface height. This
model is obtained from two related facts: (a) for light to
be detected, the surface-height gradient must be less than
a small value A, and (b) the light that is detected is not
significantly deflected from its original path. In the limit
that A—0 these conditions yield (3.3). In order to gen-
erate images directly from an ideal wave form, and to in-
clude the fact that A actually has a finite value, we use
the following analytic approximation that has the correct
limiting behavior:

Is(X,0)=I,A*/(A*+B%(%,1)) , (3.4

where B*= Eﬁ This function, applied to the same ideal
wave form as in Fig. 3(b), is shown in Fig. 3(c). The re-
sult is in good agreement with the ray-traced image of
Fig. 3(b), although it does not reproduce the radial effects

1133

observed at the corners of the ray-traced image and actu-
al images, nor the diffuse background associated with the
temporal integration. [The radial effects are primarily
due to the aperture of the first lens, and are neglected in
the derivation of (3.1).] The result is not strongly depen-
dent on the value chosen for A. We conclude that the
model of (3.4), or even the § function limiting behavior of
(3.3), is well founded.

IV. EXPERIMENTS: BASIC OBSERVATIONS

In this section we introduce the phenomenon of struc-
tured time-averaged images and present examples ob-
served in cavities of different shapes. In Sec. IVA we
show the relationship between the symmetry of the aver-
age pattern and that of the container. In Sec. IV B, we
use time-dependent statistics of the instantaneous pat-
terns to show that the structure in the average images
does not result from occasional ordering of the entire in-
stantaneous pattern; instead the structure results from
small patches of the instantaneous pattern that are or-
dered and in phase with the average pattern. Finally, in
Sec. IV C, we discuss the time-dependent convergence of
the averaging process.

A. Boundary symmetry

Our interest in time averages was originally motivated
by the ideas presented in Refs. [8—10], the authors of
which investigated dynamical systems represented by
mappings and differential equations defined on symmetric
spatial domains. They discussed dynamical transitions
that change the symmetry of the invariant measure of the
attractors in phase space, and argued that these
symmetry-changing bifurcations would be manifest in
physical space through the time averages of appropriate
physical variables. Our measurements of chaotic Fara-
day waves provide a possible system in which to explore
these ideas. Therefore, we chose cells with several
different types of symmetry. The characteristics of the
various cells are summarized in Table 1.

1. Square cell

Typical images taken in a square cell are shown in Fig.
1. The stationary pattern [Fig. 1(a)], observed just above
the onset of the Faraday instability, is a standing wave
that conforms both to the dispersion relation and the
boundary conditions; it is similar to the mixed modes de-
scribed by (3.2). (For a complete discussion of onset pat-
terns, the reader is referred to Douady and Fauve [18].)
For sufficiently high drive amplitudes, i.e., €>0.1 for
these cavity and fluid parameters, the stationary patterns
are unstable and the waves become disordered in both
space and time.

A disordered instantaneous image in the chaotic re-
gime is shown in Fig. 1(b). In addition, a series of images
from the central region of the cell, spaced 4.5 s apart, is
shown in Fig. 4. The instantaneous images display small
patches of locally ordered square symmetric waves, as
seen for example in the center of the lower left image of
Fig. 4. The patches are interspersed with many defects,
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FIG. 4. Series of six instantaneous images of chaotic waves in
square cell 4 at 4.5 s intervals (f,=55.75 Hz, e=1.0). The
central region of the cell is shown; time increases downward,
then across.

and the number of defects fluctuates in time. The orien-
tations of the patches also vary, although a visual inspec-
tion suggests that they are affected by the boundaries.

To estimate the degree of disorder in the instantaneous
pattern, we determine the correlation length from the
spatial autocorrelation function

G(AX)=(AI(Z,)AI(X+AX,1)./(AI*)., 4.1
where AI(X,t)=1(X,t)— A(X) [33]. The computations
include the central region L /6 <(x,y) <5L /6 and are en-
semble averaged over a series of instantaneous images.
This function is shown in Fig. 5(a). A one-dimensional
cut through G (AX), shown in Fig. 5(b), reveals a sharp
central peak, a decaying oscillatory tail, and possibly a
slowly varying baseline. The sharp central peak is due to
imaging nonlinearity, and we do not attempt to describe
the correlation function for small Ax. We attribute the
slight baseline variation to nonuniformity of the illumina-
tion. The peak-to-peak amplitude |AG| of the oscillatory
tail can be approximated by a decaying exponential, as
shown in the inset of Fig. 5(b). We use the decay length
as a measure of the correlation length. We note that the
data could also be described approximately by a power
law. However, the correlation length obtained in the
manner described here is in reasonable agreement with
estimates obtained in other ways, e.g., the inverse band-
width in Fourier space. We find that the correlation
length for the conditions of Figs. 1 and 4 is 2.0%+0.2 cm.
This value is approximately six times the dominant image
wavelength, or 20% of the container width. It decreases
slowly with .

The time-averaged image A (X) is shown in Fig. 1(c).
It is square symmetric and aligned with the boundaries.
The average image is significantly different from the im-

L/4
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FIG. 5. Autocorrelation function, G(AX) of instantaneous
images of chaotic waves (square cell 4, f,=55.75 Hz, e=1.0).
(a) Two-dimensional inverted gray scale image. (b) One-
dimensional cut at Ay =0. The inset shows the peak-to-peak
amplitude, and a fit to a decaying exponential. The correlation
length is approximately 20% of the width of the cell.

age observed near onset; it lacks the long-wavelength
modulation of the onset pattern. In the central region,
the wavelength and oscillation amplitude are nearly con-
stant. These properties are shown graphically in Fig. 6,
where we plot A,(x)=(A(X)), over the range
L/4<y<3L/4 as a solid line. (For reference, we also
plot the corresponding spatial average for the stationary
image observed at onset, offset vertically.) The intensity

x (cm)

FIG. 6. Averages over y of the time-averaged images (solid
line) and the time-independent onset state (line with dots, offset
vertically), from Fig. 1. The time average is oscillatory but
lacks the slower modulation shown by the onset image.
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of the average image goes to zero at the boundaries of the
cell mainly because the meniscus imposes nonzero slope
at the walls; there is also a slow spatial variation due to
the illumination, which is maximal at the center of the
cell.

In order to test whether the average images are repeat-
able (as opposed to varying on even longer time scales),
we have performed consecutive time averages for 15 min
using the same drive parameters. The resulting averages
are essentially identical: the rms difference is less than
2% of the mean, and their wave numbers and phases are
identical. Average images obtained after reducing the
drive acceleration to zero between measurements are also
essentially identical.

2. Circular cell

Images for a circular cavity are shown in Fig. 7. The
onset pattern [Fig. 7(a)] is a standing wave pattern with
symmetry, of the

eightfold rotational form

(a)

(b)

(c)

FIG. 7. Instantaneous and time average images for circular
geometry (cell C, f,=81 Hz). (a) Shadowgraph image of time-
independent wave pattern near onset (¢=0.01). (b) Instantane-
ous image of a chaotic pattern (¢=0.5). (c) Time average over
12 800 images or ~ 15 min (¢=0.5).

E=agJo(kor) +agJg(kgr)sin8(6—6,) plus higher harmon-
ics. This pattern is significantly different from the square
wave patterns that would be observed for these fluid pa-
rameters in an infinite cell. A typical instantaneous im-
age obtained in the chaotic regime at higher driving am-
plitude (¢=0.5) is shown in Fig. 7(b). As is the case for
the square container, the instantaneous patterns show
evidence of local fourfold symmetry in small patches, and
orientational changes from patch to patch. Finally, the
average image for the circular cell is shown in Fig. 7(c).
In contrast to both the onset image and the instantaneous
images, the average image has full rotational symmetry.

3. Other geometries

The results from chaotic patterns in a slightly elliptical
cavity, cell D, are shown in Fig. 8 for f,=100 Hz. At
relatively low drive amplitude, € =0. 15, the instantaneous
images are time dependent and reasonably disordered in
space, with local patches of approximate fourfold symme-
try. An example is shown in Fig. 8(a). The time average
image is highly asymmetric [Fig. 8(b)]. It has the same
set of reflection symmetries as the cavity. The contrast at
the center of the pattern is strong, but there are large
areas of low contrast along the major axis which are ab-
sent along the minor axis. At higher drive amplitude the
average image is nearly circular, as shown for €¢=0.50 in
Fig. 8(d). The regions of low contrast have disappeared,
and the eccentricity of the average is now approximately
that of the cavity. Summarizing, we find that the asym-
metry of the average image in a slightly distorted
geometry decreases with increasing disorder in the waves.

Some exploratory work was also performed in an isos-

(a)

(c) (d)

FIG. 8. Instantaneous [(a) and (c)] and time-averaged [(b) and
(d)] images in a cell with elipticity 0.02 at f, =100 Hz. [(a) and
(b)] €=0.15; [(c) and (d)] e=0.50. The asymmetry of the resul-
tant image is amplified at the lower drive amplitude, and is less
pronounced at higher €.
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FIG. 9. Enhanced time-averaged image observed in the tri-
angular cell E (e=1.5).

celes triangular cell, created by bisecting square cell 4
along a diagonal. Structured time averages were again
found, as shown in Fig. 9, but seemed too complex for ex-
tended study.

4. Summary

Qualitatively we observe that images of spatially and
temporally chaotic wave patterns can have highly or-
dered, structured time averages in various geometries.
Although the instantaneous images show local fourfold
rotational symmetry, as predicted by theory for these
fluid parameters, the symmetry of the average images is
determined by the boundaries.

B. Time-dependent cross correlation
coefficient

We now address the question of how the average im-
ages develop from a sequence of instantaneous images.
The following are two possible scenarios: (i) The instan-
taneous patterns fluctuate randomly, but occasionally
pass through fully ordered states which are closely
aligned with the average; and (ii) the instantaneous pat-
terns fluctuate chaotically, are never fully ordered, but
are somehow biased toward the average. In order to
probe the proximity of the instantaneous image to the
average image, we calculate the cross correlation
coefficient between the spatial fluctuations of the average
and instantaneous images as a function of time, G, ,(1):

G ()=(8A4(X)8I(X,1)) /8 A 1, 8] (4.2)

where the angular brackets denote averages over space,
and where 84=A4—(A4) and 8I=I—(I) denote the
subtraction of the spatial mean. This function ap-
proaches unity for instantaneous images that are optimal-
ly correlated or aligned with the average, and approaches
zero for images that are completely uncorrelated. It has
a positive mean value, provided that the average image
has non-zero structure. This can be seen as follows:

(8A(X)8I(X,1)) _ (BA(X)8I(X,1))
8ArmSSIl'ms 8Arms81

_(84(x)84(x)) _ 8Amms
SArmSSIrms SIrms

Gra()=

ms

(4.3)

We have assumed that the normalization, § 4,81, is

constant in time. This assumption is valid to within
~1%.

1. Square symmetry

The time-dependent cross correlation coefficient is
shown in Fig. 10(a) for a series of 500 images at e=1.5.
The images are spaced 0.3 s apart. We consider only the
central fourth of the cell in order to avoid wall effects.
The signal-to-noise ratio in Fig. 10(a) is roughly six, so
some of the small fluctuations are not significant. We
find a mean correlation of approximately 0.16, with a
standard deviation of about 0.10. The characteristic
correlation time is about 2.2 s. The fluctuations in Fig.
10(a) are not far from Gaussian, and no events with
correlations above 0.5 are found. These observations ex-
clude scenario (i), in which the instantaneous pattern
would show occasional spikes of very strong correlation
with the average, but are consistent with scenario (ii).

It is useful to inspect the time- and space-dependent
function 6 4(X)8I(X,t), the space average of which yields
G 4(t). Sequences of snapshots of this function (which
are impractical to include here) reveal short-lived patches
of size comparable to the correlation length that are or-
dered and aligned with the average image. We find that
the times of relatively strong correlation are not dominat-
ed by regions where the local wave amplitude is small.

2. Circular symmetry

Measurements of G;,(t) for a circular cell are shown
in Fig. 10(b). The calculation is again performed over the
central quarter of the cell area. As in the square cell, the
correlation coefficient exhibits approximately Gaussian

G
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FIG. 10. Cross correlation coefficient G;4(t) between the in-
stantaneous and average images as a function of time (a) for
square cell B (f,=120 Hz, e=1.5, brim-full boundaries); (b) for
circular cell C (f,=60 Hz, e=1.00). The fluctuations are ap-
proximately Gaussian; the instantaneous patterns never become
fully ordered.
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fluctuations, with no observed excursions above 0.3.

The symmetry of the averages in the circular cell sug-
gests another useful function to investigate. Because the
average image is azimuthally symmetric, i.e.,
A (r,0)= A (r), it follows that

GIA(I)E<5A (r)SI(r,O)),’g

= [rdr84(r{81(r,0)),. (4.4)

Therefore, in addition to inspecting the time- and space-
dependent function 8 4 (X )81(X,t), in the circular cell we
look at the azimuthal average of the instantaneous image,
Ie(r,t)E(SI(r,O))e. The function I4(r,¢) is shown in
Fig. 11, along with the corresponding radial variation of
the time-averaged image, 4 (r), for the images shown in
Figs. 7(b) and 7(c). Note that the two functions show os-
cillations of similar shape and amplitude. However, the
maxima do not line up perfectly. The amplitude and the
phase of I,(r,t) are important in accounting for the
behavior of G, (t). Also notice that the instantaneous
image [Fig. 7(b)] does not have obvious ring structure,
despite the structure seen in its azimuthal average. In-
stead, the instantaneous image is made up locally of
patches of square patterns.

To explore the time dependence of the correlations for
the circular cell, we show in Fig. 12(a) an intensity coded
plot of I4(r,t) for a series of instantaneous images, along
with the corresponding measurement of G;,(¢). Distinct
vertical bands, corresponding to the time average images,
can be observed by viewing the images at a glancing an-
gle. The bands fade in and out as a function of time, and
rarely seem to extend across the full radius of the cell.
We observe that the corresponding value of Gj,(t) in-
creases at times when the vertical bands are prominent.
At most times when the bands are strong, they are
aligned in such a way as to contribute coherently to the
average.

The same functions I4(r,t) and G 4(t) are shown for
stronger excitation, ¢=1.00, in Fig. 12(b). In this case,
we observe that the vertical bands in I 4(r,t) are much less
apparent, and persist locally for much shorter times. The
corresponding measurement of G;,(t) reveals fluctua-
tions that are now much larger than the very small mean
value; the characteristic time scale is also much reduced.

4 T T
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FIG. 11. Azimuthal averages of the instantaneous image (line
with dots, offset) and time-averaged image (solid line) for circu-
lar cell C (f,=81 Hz, ¢ =0.50). The data correspond to the im-
ages shown in Figs. 7(b) and 7(c).
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FIG. 12. Intensity-coded plot of the azimuthally averaged in-
stantaneous images as a function of radius and time, and the
corresponding cross correlation coefficient G, 4(¢) at (a) e=0.5
and (b) e=1.0. The data are from the circular cell C, f, =81
Hz. When symmetric patches appear in the azimuthal average,
they are phase coherent with the average.

The structure in the time-averaged image is still quite evi-
dent.

These studies of time-dependent correlations indicate
that the structured averages are a consequence of phase
coherence that is induced in the instantaneous wave pat-
terns by the boundaries.

C. Approach to the mean

Finally, we ask the rather simple question of how the
time averages converge, as the averaging time is in-
creased. In order to address this issue, we measure the
rms difference between finite and infinite time averages:

F(r)={(A(X,71)— A(X,»)))1"?, (4.5a)
where
A&,n=01/7) [1(x,0dt . (4.5b)
0

For a system with random Gaussian fluctuations, this
function would decay as the inverse square root of the in-
tegration time. Typical measurements of F(7) are shown
in Fig. 13 on logarithmic scales for three different drive
amplitudes. For each g, the result is approximately a
power law; the magnitude of the average exponent is
0.40+0.03, clearly below 0.5. A broken line is drawn for
reference with slope 0.4. (The exponents appear to fluc-
tuate somewhat from run to run.) The fact that the mag-
nitude of the slope is below 0.5 implies significant time
correlations that decay more slowly than an exponential.
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FIG. 13. Rms deviation of the short time average from an
infinite time average, as a function of integration time (circular
cell C; f,=60 Hz; €¢=0.75, 1.00, 1.25). The slope of the dashed
line is —0.4.

V. INTERPRETATION OF TIME-AVERAGED
IMAGES

In this section we address the problem of interpreting
images that have been averaged over a time long com-
pared to the characteristic time of fluctuations. We show
that the averaged image is related to the probability dis-
tribution function (PDF) of spatial phase fluctuations of
the underlying wave pattern. This result follows qualita-
tively from the statement that the optics highlight only
the extrema of the local instantaneous wave pattern.
Therefore, the time average intensity at a particular posi-
tion is proportional to the fraction of time that position is
occupied by an antinode in the wave pattern.

In the following subsections, we develop interpreta-
tions for the time averages using several simple models.
First, we consider a one-dimensional model incorporating
phase fluctuations that vary slowly in space and we for-
mally show how the rms power in the average pattern is
related to the width of the PDF of local phase fluctua-
tions. We then extend the model to two dimensions in
Sec. V B. In the third and fourth subsections we consider
wave number quantization effects, and the role of ampli-
tude variations. Finally, we show the correspondence be-
tween the time average of images and the time average of
the wave pattern.

A. One-dimensional model

Our imaging process is much more sensitive to phase
fluctuations than it is to amplitude fluctuations. There-
fore, we consider an idealized one-dimensional model for
the spatial part of a standing wave with spatially and
temporally varying phase, but constant amplitude:

(5.1

We now use the fact, justified in Sec. III B, that the
recorded image is approximately a & function of the local
surface height gradient, I (x,t)=1,8(B(x,t)), where

&(x,t)=a cos(kx +@(x,t)) .

B(x,t)=0,&(x,t)~ —«ka sin(kx +¢(x,t)) . (5.2)

We have assumed that the phase gradient is small. This
reduces the image essentially to a sum of § functions:
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I(x,t)=10}l; S Skx +@(x,0)—nm) |

n = — o0

(5.3)

In order to compute the time average of this function,
A (x)=1I(x,t), we introduce the PDF of the local phase
fluctuation,
_1 pT
P(<p,x)=7f0 dt 8(@(x,t)—@) , (5.4)
normalized such that f dpP(p,x)=1. It then follows
that

I
A(x)=W0 S P(nm—kx,x) , (5.5)

where N is a constant. Therefore, the spatial dependence
of the average image is related to the PDF of the local
phase fluctuations. If the phase fluctuations were evenly
distributed over the range [ —, 7], then the average im-
age would be structureless. On the other hand, suppose
that the phase fluctuations are Gaussian with a width o
independent of position,

P(p) = exp(—¢?/20?) . (5.6)

In this case, the average image will have structure. We
insert this distribution into Eq. (5.5) and expand in a
Fourier series. The average then becomes (apart from the
normalization)

AX) <1+ 3 e 2 cos(2mkx) .

m>0

(5.7

It is now easy to see that if the distribution is reasonably
wide, e.g., 0 > 7 /4, then the terms with m >1 can be
neglected, and the resulting time average is approximate-
ly 1+acos(2kx), with a= exp(—20?). Note that the
wave number of the average image is twice that of the
base pattern. This results from imaging both the positive
and negative extrema of the wave pattern. In this highly
idealized case, the rms fluctuation in the average, normal-
ized by its mean, is

8Ams _ ([A4(x)—(A4(x))])'?
(4) — (A4(x))

=L exp(—20?), (5.8)

V2
where the brackets indicate spatial averages. This deriva-
tion is only weakly dependent on the assumed form of the
PDF. Provided the distribution is symmetric and
peaked, the result (5.8) can still be used to estimate the
width o from the rms fluctuation in the average, and the
corrections will appear at the higher wave numbers.

To be useful for chaotic waves, this model must be ex-
tended to include possible gradual spatial variations of
the PDF of phase fluctuations in (5.1)—(5.7). These varia-
tions can be manifest in two different ways: as spatial
drifts in the average local phase, and as changes in the
width of the distribution. The former affect the positions
of the resulting maxima, while the latter result in local
changes in contrast, or amplitude, of the measured aver-
ages. This separation can be seen by rewriting (5.1) as
follows:



51 STATISTICAL STUDIES OF CHAOTIC WAVE PATTERNS

&(x,t)=a cos(kx +@(x)+¢'(x,1)) , (5.9)

where @(x) is the average phase at x, and ¢'(x,?) is the
local phase fluctuation. With the assumption that both
the time average phase @(x) and the width o(x) of the
distribution of ¢’(x,?) are slowly varying functions of po-
sition, the resulting average image is

A(x)x1+a(x)cos2[kx —F(x)] , (5.10)

where a(x)= exp[ —20%x)]. In summary, we have
shown using a simple one-dimensional model that the
time average image can be simply related to the PDF of
phase fluctuations of a base pattern. The wave number of
the average is twice that of the base pattern; its phase
varies in space and is equal to twice the local average
phase of the instantaneous pattern.

B. Two-dimensional model

The one-dimensional (1D) model of Sec. V A is rela-
tively simple to generalize to two dimensions. We use the
fact that the 8 function can be separated as in (3.3).
Theory predicts that the standing waves can be approxi-
mated as a superposition of waves in two orthogonal
directions. Allowing phase fluctuations, we write the
square pattern (2.2) in the form

§(x,t)=a[ cos(kx +@,(X,t))+ cos(ky +¢,(X,1))] .
(5.11)

We now introduce the joint probability distribution for the
fluctuating phases

P(@o gy X ) =1 [ dt 80, (3,0, )8(p,(%,0)—p,)

T
(5.12)
The average pattern then becomes
nm=o
AX)=N"' 3 Pr—kx,mm—kp,X). (5.13)
nm=—ow

In some cases, it is useful to average this function along
one of the spatial dimensions, say y, to obtain

Ay(x)E(A(f)>y=N~1 niw P,(nm—Kx,x) , (5.14)
where
Plpx)= 3 (Plgmr—ipx,y),. (515

m = —w

This operation is applicable for the case where the orien-
tation of the base pattern is essentially fixed, and there is
no direct dependence between @, and @,. It is straight-
forward to show that the function A4,(x) has the same

form as (5.10), provided that P, has ; single maximum.
Recall that a measurement of this function is shown in
Fig. 6 for an average image in the square cell; the data
are quite similar to (5.10). Therefore the interpretation of
a two-dimensional time-averaged image, after averaging

over one coordinate, is similar to that of a one-
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dimensional standing wave; the rms amplitude of the
average is related to the variance of phase fluctuations.
We shall use these results again in Sec. VI.

C. Fluctuations about multiple quantized states

It is also useful to consider what happens to the aver-
age image if the surface wave pattern alternates between
states characterized by different mean wave numbers.
For example, this might occur in a finite box of width L,
where the boundaries impose a fixed phase at the walls,
and therefore a quantized total phase difference between
walls, but the number of half wavelengths switches be-
tween N and N +1. The resulting average image is a
linear superposition of the individual average images for
each of the two fluctuating states. In one dimension, the
result is of the form

A (x)=Py[1+aycos(2kyx)]

+Pyi[1+ay cos(2ky 1x)], (5.16)

where Py is the probability of being in state N. This ex-
pression easily reduces to

A(x)=14+ Ay cos(2uyx)+ Ay cos(2kpy 1 1x) . (5.17)

Because these two cosine terms are in phase at the walls
(Neumann boundaries) and partially out of phase else-
where, the rms amplitude of the average image varies as a
function of position. Thus one hallmark of a superposition
would be a loss of contrast in the central region of the aver-
age image.

D. Amplitude modulations

We have assumed in the previous models that phase
fluctuations are important but that amplitude variations
are not. This assumption is appropriate for our imaging
system only if the local amplitude a(x) is sufficiently
large that ka (x)>>A=0.026. If the local amplitude does
vanish, e.g., due to the presence of a defect, a correspond-
ing bright spot appears in the image. This can be seen by
reevaluating (5.2), allowing a(x,¢#)=0, but maintaining
the assumption that 9, a (x,?) is negligible. This assump-
tion, while mathematically somewhat tenuous, is justified
as a rough approximation because the bright areas in the
image are observed to be larger than the spots produced
by typical antinodes. Then (5.3) becomes

I(x,t) _ 8(a(x,t))
I, |« sin(kx +@(x,1))]
+-- 'S bex+gnn—nm) . (518)

After time averaging this function, the first term in this
equation gives a contribution to 4 (x) proportional to the
local probability that the amplitude goes to zero, while
the second term can be analyzed as before. The resulting
time average is a superposition of these two results. Be-
cause we have assumed that 9,a is small, the first term
contributes only a slowly varying background to A4 (x),
while the second term is responsible for most of the short
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wavelength structure. Thus, amplitude modulations do
not dramatically affect the structure of the time-averaged
images.

E. Relation between the average image
and the average wave pattern

In the preceding sections we showed that the structure
in the time-averaged image is related to phase fluctua-
tions of the instantaneous wave patterns, and is insensi-
tive to amplitude fluctuations. However, our actual in-
terest is in the statistics of the wave patterns themselves,
not the images. We therefore consider the relation be-
tween the time-averaged images and the time average of
the wave function §, the wave height stroboscopically
measured at constant phase with respect to the drive. It
is relatively straightforward to show that the time aver-
age of (5.9) is

tx)=a [dpP(p,x)cos[kx +P(x)+@] .  (5.19)
If we assume that P(g,x) is a symmetric (even) function
of @, this reduces to the form

&(x)=1(x) cos[kx +P(x)] , (5.20)

where Y(x)=a quoP(cp,x) cos(@). [An asymmetric por-
tion of the distribution would add a negative second term
in (5.20) with both cosines replaced by sines.] A fluctuat-
ing amplitude a(x,?), as considered in Sec. VD could
also be_incorporated, and would yield the result that
Y(x)=a(x) [dp P(p,x)cos(p), provided that the fluc-
tuations in amplitude and phase are statistically indepen-
dent.

If we now compare §(x) to A4 (x) in (5.10), we observe
that the two functions are very similar: both have an os-
cillation amplitude that is a function of the PDF of the
phase fluctuations. The amplitude decreases with the
width of the PDF in both cases. The wave numbers and
phases of the two functions differ by exactly a factor of 2.
Furthermore, we conclude that the observation of struc-
tured time-averaged images implies structure in the aver-
age wave pattern. The structured averages are not due to
artifacts of the imaging technique.

F. Summary

We have shown in Sec. V that the average image can
be interpreted in terms of the probability distribution of
phase fluctuations about a base wave pattern; amplitude
variations of the waves are not important for interpreting
the average images. The wave number of the average im-
age is equal to twice the mean wave number of the base
pattern, in both one and two dimensions. The local am-
plitude of the average image is related to the variance of
the local phase fluctuations. Phase drifts in the average
image reflect spatial variations in the mean phase. In ad-
dition, we have shown that if the wave number is statisti-
cally quantized, and if several states occur with
significant probability, the resulting average image is a
superposition of averages about the individual states. Fi-
nally, structure in the average image implies structure in
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the average surface wave pattern. These results are cen-
tral to our interpretation of the further experimental re-
sults contained in Sec. V1.

VI. EXPERIMENTS: DEPENDENCE ON PARAMETERS

In this section, we investigate the systematics of the
time averages as a function of various drive parameters in
the square and circular cells. We use these statistics,
within the context of the models presented in Sec. V, to
develop an understanding of the instantaneous patterns.
We start by investigating the variation of the average pat-
tern as a function of drive amplitude and boundary con-
ditions. Next, we discuss the response observed in the
average images to variations of the drive frequency. The
average images have a distinct wave number that is relat-
ed to the mean wave number of the instantaneous wave
patterns. [This is also not far from the wave number of
the Faraday instability at lower €, as specified in (2.1).]
By varying the drive frequency and therefore the mean
wave number of the instantaneous patterns, we probe the
wave number selection process for the average images.
We describe the phenomena separately for square and
circular geometries in sections VIB and VIC since they
need to be modeled somewhat differently.

A. Drive amplitude and boundary conditions

As the drive acceleration is increased, the instantane-
ous patterns become more strongly disordered, and the
time scale for fluctuations decreases [6,22]. As we ex-
plained in Sec. V A, the rms amplitude of the average
images is related to the rms width of the distribution of
phase fluctuations. Therefore, one might expect the am-
plitude of the averages to decrease as ¢ is increased; this
is in fact what we find. Figure 14(a) shows the rms ampli-
tude of average images in a circular cell as a function of €
for two different drive frequencies, f,=60 and f,=120
Hz:

8 A =((A(X)—(AX)))*)2. (6.1)
The measurements are performed at constant frequency.
After each increment of the drive amplitude, we acquire a
series of 10 instantaneous images and a time average. In
order to minimize effects due to the radial nonuniformity
of the illumination, we calculate 8 4, only over the cen-
tral region of the image, and filter out contributions from
very low wave numbers in Fourier space. As is suggested
by (5.8), we normalize the rms amplitude by the average
intensity in the central region.

The amplitude of the average images decreases mono-
tonically with increasing drive amplitude. The corre-
sponding aspect ratios for these two drive frequencies are
10 and 17, respectively. We attribute the more rapid de-
cline of the amplitude at the higher frequency to the
larger aspect ratio. Even at the highest drive amplitudes
shown here, structure is discernible. Somewhat beyond
this range (e~3), droplets begin to break off from the
fluid surface, so it is impractical to extend the measure-
ments further.
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We have performed similar experiments with the
smaller square cavity, cell B, with both wetting and brim
full boundary conditions. The results, shown in Fig.
14(b) for f, =120 Hz, reveal that the power in the aver-
age images decreases as a function of drive amplitude, as
in the circular cell. In addition, we find that brim-full
boundary condition leads to a stronger average. This re-
sult can be understood as a consequence of increased pin-
ning of the phase of the waves at the boundaries, where
the £=0. This situation is in contrast to the flexible
boundary conditions associated with the meniscus in the
wetted case, where the width and mean height of the
meniscus can more easily fluctuate. We note that, with a
literal interpretation of (5.8), the observed range
0.01<84,,,/{A4)=<0.2 would correspond to 0.46
2o /m=0.25.

We have also tested the case of over-full boundary con-
ditions [Fig. 2(b)] in the smaller square cell. In this
geometry, traveling waves are free to propagate outward
beyond the boundaries, where they are strongly damped.
Although the instantaneous images have features similar
to those observed with other wetting conditions, the
structure in the average images is barely distinguishable
over the noise level, and is close to being azimuthally
symmetric. In summary, the strength of the average im-
age decreases with increasing disorder (or phase fluctua-
tions), and depends on the degree of phase pinning at the
boundaries.

B. Frequency dependence in the square geometry

By varying the drive frequency, we can explore the na-
ture of the pattern fluctuations. In this section, we de-
scribe the amplitude and wave number of the average im-
ages as a function of frequency for a square cell, and sup-
plement these measurements with spectral data. We in-
terpret the results in terms of the models of Sec. V.
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FIG. 14. Amplitude (rms) of the average images as a function
of drive amplitude. (a) Circular cell C at f,=60 Hz (upper
curve) and f,=120 Hz (lower curve); (b) square cell B at
fo=120 Hz. Symbols: wetting boundaries (squares); brim-full
boundaries (circles). The amplitude declines as the variance of
the phase fluctuations increases.
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1. Experimental observations:
Amplitude and wave number

The amplitude 8 4, of the average image as a func-
tion of drive frequency is shown in Fig. 15(a) for square
cell A. The data are taken by incrementing both the fre-
quency and drive amplitude in order to maintain a con-
stant nondimensional drive amplitude corresponding to
€=1.0. A distinct oscillation in the amplitude of this
function is observed. The corresponding wave number g
for the average image, shown in Fig. 15(b), is observed to
have jumps at the same drive frequencies as the depres-
sions in the amplitude of the average image. Both the
amplitude and wave number are calculated for the central
region of the cell. The wave number predicted from
linear stability theory for onset patterns in an infinite sys-
tem is shown as a solid line.

The wave number measurements were made using
Fourier methods [34] applied to the central region
L /4<x,y <3L /4 of the cell. We nondimensionalize the
resulting wave number by dividing by 27 /L, where L is
the width of the cell. The result is the (possibly non-
integral) number of periods of the average image in an in-
terval of length L. Within the context of the models
presented in Sec. V, this number is equal to the number
of half wavelengths of the base pattern describing the
fluid height.

The difference between peak nondimensional wave
numbers for consecutive steps is almost exactly unity.
Because the nondimensional wave number is equal to the
number of half wavelengths of the base pattern, we con-
clude that the observed discreteness is related to mode
pulling of the pattern by the box size, i.e., an effective box
quantization of the base pattern. For true quantization,
the quantity gL /27 should be constant between the
jumps. However, it actually decreases between jumps by
almost a full integer. This is curious because the wave
number predicted by linear stability (which of course only
applies near onset) monotonically increases with frequen-

cy.

0.20
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FIG. 15. Frequency dependence of (a) the amplitude and (b)
the nondimensional wave number of the average image (square
cell A4, €=1.0), calculated over the central region,
L /4 <x,y <3L /4, of the cell. The solid line in (b) is the wave
number predicted by the dispersion relation. Jumps in g corre-
spond to quantization of the base pattern.
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2. Discussion

We pause now to consider the frequency dependence of
g within the context of the 1D analysis presented in Secs.
VA and VC. The first question we must address is
whether the average images are simply due to fluctua-
tions about a single quantized state, as described by
(5.10), or whether they result from fluctuations about two
different quantized states, as described by (5.17). The
answer turns out to depend on the drive frequency. In
the latter case, the two waves would be in phase near the
walls, and would be out of phase in the center, resulting
in a relative decrease in contrast of the average near the
center of the cell.

Let us first consider the situation at frequencies be-
tween the jumps. We found that the amplitude of the
measured averages is nearly constant over the width of
the cell. This excludes the two-state situation from being
applicable here. Therefore, between the wave number
jumps, the surface is primarily fluctuating about a single
quantized base state.

Next, we must account for the variation of the wave
number between the jumps. Two possibilities present
themselves: either the effective width of the box changes,
or the wave number is spatially nonuniform. The former
could occur if the width of the meniscus varies with f.
We estimate how much the width of the meniscus would
vary by calculating the effective size L 4 of the box under
the assumption that the wave number is actually quan-
tized, gL . /2m=n. The resulting peak-to-peak deviation
corresponds to an effective change in the box size of ap-
proximately 4 mm. The typical width of a single men-
iscus, given by I ~V'y /pg, is approximately 2 mm, so
that this effect is probably not large enough to account
for the wave number variation along the steps.

The variation of the wave number between the jumps
must therefore be explained by a spatially varying wave
number. Within the context of the model (5.10), this
would correspond to a spatially varying mean phase,
@(x). We have measured ¢q in the central region of the
average image, and we assumed that $(x) is constant in
that region. In order to look for spatial variations of g,
we measure the local wavelengths of the average image as
a function of position in the cell. The method used is
simply to find the distance between neighboring maxima
of the function 4,(X). We observe that, at some frequen-
cies, the wavelength near the boundaries of the cell is as
much as 20% larger than it is in the central region of the
cell; the local wavelength decreases steadily over the first
3-5 periods from the wall, and remains fairly constant in
the central region. As a function of frequency, the wave-
length near the boundaries decreases [between the jumps
in Fig. 15(b)]. These observations are consistent with the
conclusion that the total number of periods of the average
across the cell is quantized between the jumps; the ap-
parent gradual change in g in the central region is com-
pensated by an opposite variation near the walls.

We have argued that in the regions between the jumps
in Fig. 15(b), the average image can be modeled as result-
ing from a single-wave number state plus phase fluctua-
tions, as in (5.9). We now ask the question: what is the
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nature of the sharp transitions or jumps in the wave num-
ber? Close to the transition, does the surface fluctuate
about two different states? If so, does the pattern stay on
one of these two attractors until it discontinuously jumps
to the other? Or are the dynamics better described by or-
bits of varying length about each state, with the relative
probability of being in one state or the other varying con-
tinuously with drive frequency?

In order to probe these questions, we show in Fig. 16(a)
a high resolution measurement of the wave number as a
function of increasing and decreasing frequency, while
maintaining constant drive amplitude €. The results fol-
low one nonhysteretic, continuous curve. In addition, we
have measured the wave number over the same range, but
reducing the drive amplitude to zero before changing fre-
quency. The resulting measured wave numbers again fall
on the same curve. The amplitudes of the resulting aver-
ages (not shown) are consistent with those observed in
Fig. 15(a); the rms amplitude decreases at the frequencies
for which the measured wave number increases sharply.
Visually, the amplitude declines most strongly near the
center of the cell at frequencies coincident with the jump
in wave number. This loss of contrast is illustrated in
Fig. 16(b), which displays the vertical average 4,(x,f;)
for this range of frequencies. These results are consistent
with the two-state model (5.17) for the regions within the
jumps, where the probability of being in one state or the
other varies continuously with drive frequency.
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FIG. 16. (a) High resolution measurement of the mean wave
number as a function of drive frequency near a wave number
jump (square cell 4, e=1.0) calculated over the central region
of the cell, L /4 <x,y <3L /4. The symbols correspond to in-
creasing frequency (circles) and decreasing frequency (triangles).
No hysteresis is observed. (b) Intensity coded plot of the y aver-
age of time-averaged images as a function of drive frequency,
for the same data as in (a). The contrast decreases at the center
of the cell for frequencies coincident with the observed jump in
wave number.
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3. Experimental observations: Orientational fluctuations

Additional information about the instantaneous pat-
terns in the square cell can be derived from the spatial
power spectrum of the instantaneous images, which re-
veals the degree of orientational order of the instantane-
ous wave pattern. The ensemble average of the power
spectrum shows the range of orientations of ordered
patches in the instantaneous patterns. Power spectra of
instantaneous images are shown at two frequencies in
Figs. 17(a) and 17(b). We have averaged the spectra over
30 images. The data are from the same run as Fig. 16,
and the two frequencies are chosen to correspond to the
region within a jump in wave number [Fig. 17(a)] and a
region between jumps [Fig. 17(b)]. The spectra are calcu-
lated over the central region of the measured patterns,
and are shown logarithmically using a gray scale.

Most of the spectral power is distributed over an an-
nulus, as found earlier by Tuffillaro, Ramshankar, and
Gollub [6]. However, the angular distribution varies with
frequency, and is much more evenly distributed in Fig.
17(a) than in Fig. 17(b). To quantify this effect, we deter-
mine the rms variation of power 8P on an annulus cen-
tered around the peak wave number, normalized by the
total power (P ), This function is a measure of the
range of orientations of the ordered patches in the instan-
taneous images. Figure 18 shows 8P, as a function of
drive frequency, for the same data run as Fig. 16.

The minima of 8P i occur at the same drive frequen-
cies as the jumps in wave number of the average pattern.
From this measurement we infer that the instantaneous
wave patterns are preferentially aligned with the cell

q,L/2n
-50 0 50

(b

FIG. 17. Wave number spectra of instantaneous images at (a)
f0=57.75 Hz and (b) f,=58.5 Hz in square cell 4. The angu-
lar distribution is more uniform in case (a), coincident with the
jump in the wave number (see Fig. 16).
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FIG. 18. Azimuthal anisotropy in the spectral power as a
function of frequency in square cell 4, for the same range as
Fig. 16. The minimum in 8P, occurs at the same frequency as
the wave number jump, and indicates enhanced orientational
fluctuations.

walls at drive frequencies between the jumps in wave
number where a single wave number model is applicable,
and are more randomly oriented at the frequencies for
which a two state model is needed. This suggests that the
largest variations in orientation are associated with transi-
tions between different base states of the instantaneous
pattern.

4. Summary

In summary, well-defined jumps in the wave number of
the average images occur as a function of drive frequen-
cy. The measurements and observations lead to the fol-
lowing general picture of the pattern fluctuations. The
jumps correspond to integral changes of the total phase
difference of the base pattern across the cell. However,
the local wave number varies with position. The instan-
taneous patterns can be described as fluctuating either
about a single quantized state, or about two quantized
states with different wave numbers (as in Sec. V C), de-
pending on the drive frequency. The orientational fluc-
tuations are enhanced in the latter situation.

C. Frequency dependence in the circular geometry

1. Experimental Observations: Amplitude and wave number

We have also investigated the frequency dependence of
the average images in the circular cell. As we found for
the square cell, the amplitude of the averages [Fig. 19(a)]
oscillates; it also declines with increasing frequency, i.e.,
increasing aspect ratio. One may infer that the structure
would fade out completely for sufficiently high aspect ra-
tio, as it does for sufficiently high excitation amplitude.

The wave number g of the average image [Fig. 19(b)]
displays jumps for the circular cell as a function of drive
frequency, as well as a marked downward slope between
the jumps. For the circular cell data, we measure the
wave number from the radial dependence of the average
pattern in real space, instead of using Fourier methods.
We nondimensionalize by 27 /D, where D is the cell di-
ameter. The jumps in wave number coincide with the lo-
cal minima in Fig. 19(a). The spacing of the jumps is
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FIG. 19. Frequency dependence of (a) the amplitude and (b)
the nondimensional wave number of the average image (circular
cell C, €=0.5) calculated over the central region, » <3R /4, of
the cell. The solid line in (b) is the wave number predicted by
the dispersion relation.

again consistent with an effective box quantization. In
contrast to the data observed in the square cell, the mea-
sured wave number falls consistently above that predicted
by the dispersion relation.

2. Discussion

The quantity gD /2 in the circular case is approxi-
mately equal to the number of periods in the average
across the diameter of the cell. As for the square cells, it
is useful to consider the average image as resulting from a
simple base wave pattern with phase fluctuations. We
now consider the nature of the base wave patterns
about which the instantaneous patterns fluctuate: Are
they normal modes of the container, S,(r,60)
=J,(kr)cosn (6—0, ), composed of Bessel functions in
the radial direction and the corresponding angular fac-
tors? Or are they square-symmetric waves, as would
occur in the infinite plane near onset? We show below
that the square-symmetric waves provide a better model
even in the circular geometry.

To determine which approach is superior, we note that
for the simplest Bessel mode pattern, S, the appropriate
quantization condition would involve the number of half
wavelengths across the radius of the cell. In addition, the
center would always contain a local maximum (even
when fluctuations are included). The only Bessel mode
which could result in a local minimum at the center of
the average would be S|. Higher order circular modes all
have zero amplitude and zero slope at their centers, and
would therefore also produce local intensity maxima at
their centers. In Fig. 20 we show an intensity coded plot
of the average image, azimuthally averaged, as a function
of radius and frequency. By looking down along the left
side of this plot (i.e., at » =0) we observe that the average
intensity at the center of the cell oscillates as a function
of frequency, and is sometimes a relative minimum with
respect to r. Therefore a Bessel mode description would

FIG. 20. Intensity coded plot of the average image in circular
cell C as a function of radius and drive frequency (same data as
Fig. 19). The average at the center of the cell can be a local
maximum or a minimum, depending on frequency.

require that S; be included at some frequencies. On the
other hand, the instantaneous images all display patches
of local fourfold symmetric patterns which would require
higher order modes. Therefore a description in terms of
Bessel modes would be fairly complex.

We now show that the results of Figs. 19 and 20 are
consistent with a model based on square symmetric waves
plus phase and orientational fluctuations. We focus at-
tention initially on a single wave number base pattern at
one orientation and later average over angles. Appropri-
ate base patterns take one of the following three forms:

&4+ = cos(kx’+g@,. )t cos(ky’+¢@,) ,

So= cos(kx'+ @, )Esin(ky’ +¢,) , (6.2)

é‘—_ :sin(Kx’+¢x:)iSin(Ky’ +(Py') .

We have chosen the origin at the center of the cell, and
the primes denote a reference frame at an angle Y with
respect to the x,y axes; these patterns are aligned with
respect to the x’,y’ axes. The average image while
aligned in this way can be calculated by following the ar-
guments of Sec. VB. We expect that the boundaries will
impose a reflection symmetry after averaging over phase
fluctuations, i.e., @, (x')=@,(—x’), and ¢,.(0)=0. Be-
cause of the full rotational symmetry of the cell, Y also
fluctuates; these angular fluctuation should be statistical-
ly independent of the fluctuations in phase. Therefore,
we also average over Y. The result is 4 (r)=1%aJy(2xr)
for {, and {_ and A4 (r)=1 for &, This model allows ei-
ther a maximum or minimum at the center, and displays
rings approximately evenly spaced radially. It is there-
fore qualitatively compatible with the observations.
However, experimental limitations appear to preclude
further quantitative tests.
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3. Summary

In summary, in order to account for the observed aver-
age images in the circular cell, a description of the instan-
taneous patterns based on Bessel modes would be exces-
sively complex. A simpler description may be construct-
ed using fluctuating square-symmetric waves (2.2), with
rotational freedom about a fixed origin. This description
coincides with the visual appearance of the instantaneous
patterns [Fig. 7(b)] and with the patterns expected in an
infinite layer.

VII. SUMMARY AND CONCLUSIONS

The most striking observation of this investigation is
that structure is found in the time-averaged images of
chaotic wave patterns. The imaging process essentially
highlights the antinodes of the wave patterns; the time-
averaged images can therefore be interpreted in terms of
the probability density of antinode positions, which in
turn is related to the local distribution of phase fluctua-
tions of the pattern. Structure in these averages implies
long range phase coherence and a constrained phase at
the boundaries. The symmetry of the observed structure
is then determined by the boundaries, not by the symme-
try of the fluctuating pattern. Quantization effects are
observed in the averaged images as the wave number of
the pattern is varied.

We have investigated chaotic wave patterns as a func-
tion of container geometry, boundary wetting, drive fre-
quency and drive amplitude. Through careful considera-
tion of the imaging process, we show how measurements
of averaged quantities can be interpreted to reveal de-
tailed information about the instantaneous patterns. The
main results are as follows.

(i) Time-averaged shadowgraph images can be inter-
preted in terms of a simple model for the instantaneous
waves based on local phase and amplitude fluctuations
about a single wave number base pattern. Both one- and
two-dimensional versions of the model are described.
The measurements are more sensitive to phase than to
amplitude fluctuations. Structure in the time averaged
shadowgraph image implies structure in the time average
of the wave pattern.

(i) Spatially and temporally disordered surface waves
at moderately high aspect ratio can have structured
time-averaged patterns (Figs. 1 and 7-9). The symmetry
of the average patterns is determined by the symmetry of
the boundaries, despite the fact that the instantaneous
patterns are similar: they contain square-symmetric
patches of locally ordered waves interspersed with de-
fects. The structured averages imply that the distribu-
tions of phase fluctuations about the base pattern are
peaked; the phase of the based pattern is fixed with
respect to the boundaries. The most useful base pattern
for both square and circular cells is a sum of sines (or
cosines) for the fluid and parameters investigated; an ad-
ditional rotational degree of freedom is needed for the
circular cell. This base pattern is the same wave pattern
expected near onset in an infinite plane.

(iii) The time-dependent cross correlation coefficient
G;4(t) between an instantaneous image and the time
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average is a useful tool for probing the proximity of the
instantaneous image to the average (Figs. 10 and 12). It
reveals that the system continually fluctuates about the
mean, but never becomes fully ordered. In phase space,
the system should be viewed as fluctuating far from the
fully ordered base state.

(iv) The convergence of the averaging process (Fig. 13)
is significantly slower than that of a simple Gaussian pro-
cess. This is indicative of time correlations that decay
more slowly than an exponential function.

(v) The amplitude of an average pattern is sensitive to
the degree of pinning of the meniscus at the boundaries
[Fig. 14(b)]. The strongest structured averages are found
when the meniscus is pinned by the corner of a ledge,
whereas no structure is observed when the waves can
propagate beyond the ledge.

(vi) The amplitude of the average image is a decreasing
function of the degree of disorder in the instantaneous
pattern; as the drive amplitude is increased, the contrast
in the average images decreases (Fig. 14). This change
corresponds to an increased variance in the local phase
fluctuations. For sufficiently strong disorder, structured
averages are undetectable.

(vii) The mean wave number of the average images is
observed to have nonhysteretic jumps as a function of
drive frequency (Figs. 15, 16, and 19). This phenomenon
corresponds to integral changes of the total phase
difference of the base pattern across the cell. The pat-
terns observed at frequencies between the jumps are
characterized by fluctuations about a single wave number
state; for frequencies near the jumps, the patterns fluctu-
ate about two states with different wave numbers.

(viii) The average orientation of instantaneous patterns
in the square cell is biased by the walls of the container.
The degree of angular bias, measured from the ensemble
average of the spatial power spectra, is a function of drive
frequency (Figs. 17 and 18). The largest orientational
variations occur under conditions for which a two state
model is appropriate; this observation suggests that large
orientational deviations may be associated with transi-
tions between the states.

We did not detect the symmetry-changing bifurcations
described in Refs. [8-10], though we made some efforts
to look for them. Rather, the time averages have the
maximum symmetry allowed by the boundaries at all
values of the excitation. It is of course possible that tran-
sitions might be found at lower excitation frequency
(longer wavelength) or for other geometries. We did
some additional experiments with an isosceles triangular
cell, but the average patterns were difficult to interpret.
In any case, many of the phenomena noted in this investi-
gation could not have been anticipated based on symme-
try arguments alone.

In the Introduction, we posed the question of how the
averages might be related to nonchaotic wave patterns
near onset, which are modes of the container at these as-
pect ratios. In general, there seems to be no deep connec-
tion. Instead, the averages are related to fluctuations
about square-symmetric base patterns. For example, the
ring structure in the time-averaged image for the circular
cell arises naturally from the angular averaging over
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wave patches with fourfold symmetry, in conjunction
with phase pinning by the boundaries, and not from the
Bessel function structure of the linear modes near onset.

Taken together, these measurements provide a number
of ways of characterizing the spatiotemporal chaos.
Similar methods could be used for other spatially extend-
ed systems. One significant result is the clear indication
of residual phase coherence in a relatively large system.
Similar results were found in rotating convection [12], so
the phenomena are not uncommon, though the special
properties of the Faraday system at low viscosity may al-
low the structured averages to be observed at higher as-
pect ratio. We showed that the instantaneous waves can
be modeled as amplitude and phase fluctuations about a
base state with a dominant wave number (or in some
cases, two such states); the form of this base state is the
one expected near onset in an infinite system (2.2).
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These underlying states may be conceptually analogous
to the coherent structures found in a variety of turbulent
fluid systems [35-37]. Their presence suggests that the
number of degrees of freedom of these extended systems
may be smaller than one might have expected. The
methods of proper orthogonal decomposition [35,38,39]
could possibly be used as an alternate way of detecting
what we have termed the ‘“‘underlying base states” in this

paper.
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(a)

(d)
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FIG. 1. Instantaneous and time-averaged images for square
geometry (cell 4, f,=55.75 Hz). (a) Shadowgraph image of the
time-independent wave pattern near onset (¢=0.05). The wave
pattern is approximately a mixed mode with mode numbers
(29,6). (b) Instantaneous image of a chaotic pattern (e=1.0).
(c) Time average over 12 800 images (e=1.0). The average re-
veals the probability distribution of antinode positions. High
intensities are shown dark.
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FIG. 12. Intensity-coded plot of the azimuthally averaged in-
stantaneous images as a function of radius and time, and the
corresponding cross correlation coefficient G, ,(¢) at (a) e=0.5
and (b) e=1.0. The data are from the circular cell C, f,=81
Hz. When symmetric patches appear in the azimuthal average,
they are phase coherent with the average.
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FIG. 16. (a) High resolution measurement of the mean wave
number as a function of drive frequency near a wave number
jump (square cell 4, e=1.0) calculated over the central region
of the cell, L /4 <x,y <3L /4. The symbols correspond to in-
creasing frequency (circles) and decreasing frequency (triangles).
No hysteresis is observed. (b) Intensity coded plot of the y aver-
age of time-averaged images as a function of drive frequency,
for the same data as in (a). The contrast decreases at the center
of the cell for frequencies coincident with the observed jump in
wave number.
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FIG. 17. Wave number spectra of instantaneous images at (a)
fo=57.75 Hz and (b) f,=58.5 Hz in square cell 4. The angu-
lar distribution is more uniform in case (a), coincident with the
jump in the wave number (see Fig. 16).



r (cm)

f (Hz)

FIG. 20. Intensity coded plot of the average image in circular
cell C as a function of radius and drive frequency (same data as
Fig. 19). The average at the center of the cell can be a local
maximum or a minimum, depending on frequency.



FIG. 3. Quantitative test of the imaging process. (a) Sample
image of an onset pattern in the square cell. (b) Ray-tracing
computation of the image, averaged over a cycle of the wave
pattern. (c) Analytic approximation to the optical intensity
Is(X) (Eq. 3.4). The waveform used is a positive mixed mode
[Eq. (3.2)], with mode numbers (11,3). Bright spots in the image
(shown dark here) appear at positions of small surface slope, i.e.,
at antinodes. The apparent wave number of the pattern is dou-
bled.



FIG. 4. Series of six instantaneous images of chaotic waves in
square cell 4 at 4.5 s intervals (f,=55.75 Hz, e=1.0). The
central region of the cell is shown; time increases downward,
then across.
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FIG. 5. Autocorrelation function, G(AX) of instantaneous
images of chaotic waves (square cell 4, f,=55.75 Hz, e=1.0).
(a) Two-dimensional inverted gray scale image. (b) One-
dimensional cut at Ay =0. The inset shows the peak-to-peak
amplitude, and a fit to a decaying exponential. The correlation
length is approximately 20% of the width of the cell.
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FIG. 7. Instantaneous and time average images for circular
geometry (cell C, f,=81 Hz). (a) Shadowgraph image of time-
independent wave pattern near onset (¢=0.01). (b) Instantane-
ous image of a chaotic pattern (¢=0.5). (c) Time average over
12 800 images or ~ 15 min (e=0.5).
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FIG. 8. Instantaneous [(a) and (c)] and time-averaged [(b) and
(d)] images in a cell with elipticity 0.02 at f, =100 Hz. [(a) and
(b)] e=0.15; [(c) and (d)] €=0.50. The asymmetry of the resul-
tant image is amplified at the lower drive amplitude, and is less
pronounced at higher e.
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FIG. 9. Enhanced time-averaged image observed in the tri-

angular cell E (e=1.5).



